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Abstract

As anticipated in True Names by Vernor Vinge, identity has
been recognized as our most valued possession in cyberspace.
Attribution is a key concept in enabling trusted identities and
deterring malicious activities. As more people use the Web to
communicate, work, and otherwise have fun, is it possible to
uniquely identify someone based on their Web browsing be-
havior or to differentiate between two persons based solely on
their Web browsing histories? Based on a user study, this pa-
per provides some insights into these questions. We describe
characteristic features of Web browsing behavior and present
our algorithm and analysis of an ensemble learning approach
leveraging from those features for user authentication.

1 Introduction
The problem of user identity is one of the fundamental and
still largely unresolved problems of cyberspace, testing the
boundary between trust and privacy. Multiple approaches
have been proposed to solve this problem through consoli-
dated password schemes (e.g., OpenID (Thibeau and Reed
2009), Firefox’s Persona (Mills 2011)). On the other hand,
the popularity of social media such as Facebook and Twit-
ter have made possible the availability of large amount of
spontaneous online usage behavior ripe for analysis and in-
dividual search history patterns are already used by Google
to personalize search results. Reality mining (Pentland and
Pentland 2008) captures unconscious patterns of behavior
through signals obtained from wearable mobile computing
devices to reveal personal characteristics in order to shape
human interaction. As our interaction with the Web becomes
more natural and even mediates our interaction with others
(Turkle 2012), we claim that Web browsing behavior can
be rich enough to uniquely characterize who we are through
unconscious behavioral patterns and authenticate ourselves
with a cognitive personal fingerprint.

Attribution is broadly defined as the assignment of an ef-
fect to a cause. We differentiate between authentication and
identification as two techniques for the attribution of iden-
tity. Authentication is defined as the verification of claimed
identification (Jain, Bolle, and Pankanti 1999). Identifica-
tion involves recognition as a one-to-many matching prob-
lem while authentication is a one-to-one matching problem.
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While biometric methodologies strive to provide instant au-
thentication results, this paper focuses on the continuous au-
thentication problem where authentication is made over time
through the monitoring of activities.

The paper is organized as follows. In Section 2, we briefly
describe prior research on the modeling of Web brows-
ing behavior and attribution in cyberspace. In Section 3,
we present our descriptive analysis of the different features
of Web browsing behavior from clickstream data obtained
through a user study. In Section 4, we present our empirical
analysis on authenticating users with classifiers trained from
individual features and introduce our algorithm for an en-
semble of classifiers trained from subsets of those features.
Our conclusions and future work suggestions are in Section
5.

2 Related Work
Marketers have long been interested in understanding Web
interaction behavior (Atterer, Wnuk, and Schmidt 2006) in
order to design Web sites that entice visitors to finish their
Web session with a checkout of their shopping cart. Be-
havioral targeting is an approach used by advertisers (e.g.,
DoubleClick) that tracks Web behavior to deliver advertise-
ments which match an individual’s semantic profile defined
by content-related preferences and interests. Research in
this area has concentrated on identifying the demographic
characteristics of a behavior such as age, gender, and in-
come rather than authenticating a single individual (Goel,
Hofman, and Sirer 2012). There has also been some research
on understanding online browsing behavior from an aggre-
gate perspective in order to identify influential websites in
user navigation patterns (Kumar and Tomkins 2010).

In contrast to semantic patterns, syntactic patterns charac-
terize Web browsing based strictly on session and navigation
features. They include the burstiness of pageviews, the num-
ber of page revisits, and the number of pages between revis-
its (Kumar and Tomkins 2010). As an illustration of bursti-
ness, it was noted in (Kumar and Tomkins 2010) how the
inter-arrival time cumulative distribution between any visit
to a particular URL and the previous visit fits a logarithmic
function across users. On the server side, visitors are inde-
pendent of each other so the distribution of visits can follow
a Poisson distribution. It is not clear if this type of distribu-
tion also fits the time distribution on the user side since the
webpages visited are not independent from each other. We



will show another illustration of burstiness on the user side.
In addition, the length of a session (both time and number of
pages visited) and the starting time and day of the week also
characterize user syntactic patterns.

The attribution problem in cyberspace has been addressed
in several ways mainly by leveraging from features in the
browser (e.g., history stealing, cookies) or accessing datasets
containing partially identifying information. For example,
de-anonymization in social networking websites has been
accomplished by computing the intersection of users from
group memberships in a social network using information
from hyperlinks in the browser history and knowledge about
those groups (Wondracek et al. 2010). In general, unique
identification is possible by cross-referencing independent
information sets containing partial information with a uni-
versal set in a manner equivalent to a database join (also
known as “linkage attacks”). For example, it has been pos-
sible to link medical records to individuals in voter regis-
tration records (Sweeney 1996). Some success has been re-
ported with the classification of global syntactic features of
a Web session (e.g. length of session, average time on a
page) per user (Padmanabhan and Yang 2006) aggregated
over several sessions. It has also been shown that author-
ship of content can be determined from stylometric features
on an internet scale threatening anonymity (Narayanan et al.
2012) but this type of attribution depends on published con-
tent. Research in predicting user behavior in cyberspace has
also been focused on improving tasks such as information
retrieval (Armstrong et al. 1995). For example, based on the
content of the current webpage and a user’s original search
keywords, the most relevant hyperlinks in the page are high-
lighted to guide selection of the next page to visit. This type
of prediction is oriented toward the information presented
in context to the user rather than the specific activity that a
user might pursue (e.g. send an email, read a paper, etc.).
In contrast to previous approaches, we address the attribu-
tion problem by leveraging both from syntactic patterns in
Web browsing history and the semantic content of this his-
tory with the genre of the page.

The authentication problem has been addressed in the
context of masquerade detection in computer security by
modeling user command line sequences. In the masquerade
detection problem, the task is to positively identify masquer-
aders but not to positively identify a particular user. Recent
experiments modeling user-issued OS commands as bag-of-
words without timing information have obtained a 72.7%
true positive rate and a 6.3% false positive rate (Salem and
Stolfo 2010) on a set of 15000 commands for 70 users
grouped in sets of 100 commands. In that work, a one-class
support vector machine (SVM) (Schölkopf et al. 2000) was
shown to produce better performance results than threshold-
based comparison with a distance metric. We extend the re-
sults of this work to individual feature sets of Web browsing
behavior and in combination with an ensemble.

3 Web Browsing Modeling
Logging of spontaneous clickstream data in our user study
consisted of recording through custom-built browser exten-
sions (Firefox and Chrome) the timestamp and the URL that
was visible at the time by the user (i.e., pageview). The

data was parsed offline to minimize interference with the
user. Ten subjects (2 females and 8 males) participated in
this study during the course of their work for one month.
For clarity, we only show the results of the same 3 users
in our figures. The population was fairly homogeneous and
rated themselves highly “Web savvy.” The following fea-
tures, which are detailed later, were extracted from the data:
day-of-week, time-of-day, pauses (below 5 mins), burstiness
(below 10 mins), time between revisits, and genres (i.e. page
types). The number of pageviews per user varied from 1200
to 12000. Web browsing behavioral data is noisy and re-
quires some pre-processing for analysis. Noise occurs due
to distortion from the network behavior, errors in accessing
URLs, and automatic page insertion in the browser. Future
work will mitigate those problems.

The clickstream data is parsed into “sessions” where a
session is defined as a continuous stream of pageviews de-
limited by pauses greater than 30 minutes as in (Kumar and
Tomkins 2010). The number of sessions for our users var-
ied from 42 to 205. The length of a session averaged from
14 to 131 pageviews. User sessions are the data points in
our study of Web behavior. We distinguish between global
session features and internal session features as explained
below.

3.1 Global Session Features
Standard global session features capture characteristics of
a session across pageviews. They include day-of-week
(DOW) and time-of-day (TOD) distributions. Since the ad-
vent of teleworking and flex time, these features are not uni-
form across workers. Figure 1 illustrates three users and
their patterns of weekly online activity aggregated for all
sessions. User 3 is the only one not active during the week-
end. Figure 2 shows for the same three users their patterns
of hourly online activity aggregated across all sessions. User
2 is mostly active in the morning while User 1 is active after
dinner.

Figure 1: Daily activity patterns for three users aggregated
across all sessions

Other global session features in our empirical study in-
clude the total number of pageviews, the average duration of
pageview, and the number of unique pageviews.

3.2 Internal Session Features
An internal session feature captures characteristics of
pageviews within a session.



Figure 2: Hourly activity patterns for three users aggregated
across all sessions

Pauses Pauses are the time spent by the user on a web-
page. It is computed as the difference between the times-
tamp of two consecutive pageviews. Like other human
activities, pause profiles follow the power law distribution
(Barabasi 2005). Consequently, we can fit this data with
an exponential function. Figure 3 shows the exponential
fit of pause profiles below 5 minutes for three users. This
data fit function can be used to obtain the probability of the
next pageview and act as a signature by which to compare
pause distributions. Differences between users are more pro-
nounced for shorter pauses.

Figure 3: Pause profiles below 5 mins for three users aggre-
gated across all sessions truncated to the first 5 seconds

Burstiness Burstiness, as a characteristic of human behav-
ior, follows the power law distribution. In (Barabasi 2005)
burstiness is explained as a consequence of our decision pro-
cess in prioritizing tasks. It is computed as the change in
pause time between pageviews or second order pause time
(Kwok 2012). While burstiness patterns are fairly uniform
across users for longer pause changes, they can be quite dif-
ferent for shorter pause changes as illustrated in Figure 4.

Time between revisits How often is a webpage revisited?
Some webpages were found to play a role similar to stop
words in a sentence (Montgomery and Faloutsos 2001). The
rate at which webpages are revisited may also serve as an
indicator of user identity. The revisit rate averaged between
28% to 46% among our users. Figure 5 illustrates the time
between revisits (under 6 mins) profile for three users. There
are large differences mainly in the shorter intervals of time.

Genres Encoding is necessary to obtain reusable patterns
of behavior. We encode the semantic and stylistic content

Figure 4: Burstiness profile below 1 min aggregated across
all sessions for three users

Figure 5: Time between revisits (under 6 min.) profile for
three users across all sessions truncated to the first 72s

of webpages into genres. Genres are functional categories
of information presentation. In other words, genres are a
mixture of style, form, and content. For example, books
have many genres such as mystery, science-fiction, fiction,
and biography. Similarly, webpages have evolved their own
genres (e.g, blog, homepage, article). Basically, the genre
of a document is tied to its purpose and reflects social con-
ventions for disseminating and searching information. We
claim that genres are more indicative than topics for distin-
guishing Web browsing behavior. For example, some people
are more frequent visitors of discussion forums (e.g. reddit)
than blogs (e.g. wordpress) regardless of content. However,
genres and topics do combine in important ways (e.g. spam
is a combination of content and style).

We used the Diffbot page classifier 1 to classify pages into
genres. Diffbot is a web service that currently categorizes
webpages into 21 pages. There are several problems in us-
ing a third party web service especially one that is in beta
mode. Although we expect that the quality of the categoriza-
tion will improve as Diffbot matures, the main problems are
certificate errors (some of which could be resolved internally
by loading the certificates or via automatic trust configura-
tion), external errors (which include errors that a user could
have experienced), errors due to the Web service itself (10%
of all accesses), the limitation in the number of requests per
month, and control over the page types. Figure 6 illustrates
the genre profiles for three users. There are large differences
between users in the genre of pages visited. No strong lin-
ear correlation was found between genres and pauses so we
can’t infer the time spent on a webpage from its genre.

1http://www.diffbot.com



Figure 6: Genre profiles for three users (excluding errors)
aggregated across all sessions

4 Empirical Study
The goal of this study is to verify the claim that users can be
authenticated from their Web browsing behavior. All exper-
iments were conducted in the Weka machine learning work-
bench (Hall et al. 2009) augmented by our own ensemble al-
gorithms. We extracted the features of Web browsing behav-
ior described above from each user session and aggregated
them into one feature vector. A user’s dataset consisted of
all sessions collected for that user. For each user, we com-
pared the false rejection rate (FRR) (i.e., false negative rate)
and the false acceptance rate (FAR) (i.e., false positive rate)
for classifiers derived from each feature set and an ensemble
classifier composed of classifiers based on a weighted ran-
dom sample of those features. FRR results were obtained
using cross-validation on the user’s dataset while FAR re-
sults were obtained by applying the classifier obtained on a
dataset containing the data of all the other users. Note that
FRR results will be better in practice.

4.1 One-Class Classification
One-class classification is pertinent in the context of classi-
fication with only positive examples where negative exam-
ples are hard to come by or do not fit into a unique cate-
gory. Some applications for one-class classification include
anomaly detection, fraud detection, outlier detection, au-
thorship verification and document classification where cat-
egories are learned individually. The goal of one-class clas-
sification is to detect all classes that differ from the target
class without knowing them in advance. One-class classifi-
cation is similar to unsupervised learning but tries to solve
a discriminative problem (i.e., self or not self) rather than a
generative problem as in clustering algorithms or density es-
timation. Several algorithms have been modified to perform
one-class classification. We used a one-class SVM avail-
able with LibSVM (Schölkopf et al. 2000) as part of the
Weka machine learning toolbench. SVMs are large-margin
classifiers that map feature vectors to a higher dimensional
space using kernels based on similarity metrics. The opti-
mization objective in SVMs is to find a linear separating hy-
perplane with maximum margin between class boundaries.
In the case of a Gaussian kernel, a non-linear separating
hyperplane is found that separates the class boundaries. A
kernel transforms the feature space using a similarity mea-
sure to “support” vectors (i.e., instances close to decision
boundaries) maximizing the margin. Formally, let x and x′

be two feature vectors and Φ a feature mapping function to

a higher-dimensional space, a kernel function k is defined
as k(x, x′) = Φ(x)T Φ(x′). Since the number of features
and number of examples (sessions) for each user is rela-
tively small, we use the radial basis function kernel (Hsu
et al. 2003) based on a Gaussian transform of the feature
space with default parameters. The one-class SVM in the
LibSVM library simply finds a separating hyperplane with
respect to the origin as a support vector in the complement
class.

Table 1 shows the results of one-class SVM classification
for each user and for each feature set. The global features
consists of the DOW distribution, the TOD distribution, the
number of pageviews, the number of unique pageviews, and
the average duration of each pageview in the session. For
each session, pauses (below 5 mins), bursts (below 10 mins),
and time between revisits were discretized into 100 bins.
All feature distributions (DOW, TOD, pauses, bursts, revis-
its, and genres) were normalized. In addition, Each feature
was scaled in the [-1,1] range in the training dataset (i.e., the
user’s dataset). FRR results are obtained with 10-fold cross-
validation averaged over 10 runs while FAR results are ob-
tained by applying the classifier trained on the entire user
dataset to the data of the other users applying the feature
scaling obtained during training (Hsu et al. 2003). Please
note that FRR results should be better in practice.

Figure 7 aggregates the results of Table 1. It illustrates
the tug-of-war between FRR and FAR outcomes and the dif-
ficulty of obtaining good results for authentication metrics.
An increase in FRR is usually accompanied by a decrease in
FAR and vice versa. Genres and global features were found
to be good at differentiating Web browsing behavior (as evi-
denced by lower FAR rates) while pauses, bursts, and revis-
its were found to have better recognition rates (as evidenced
by lower FRR rates). However, none of the individual fea-
tures are good enough in isolation to authenticate a user.

Figure 7: Average feature set results comparison

4.2 Ensemble Learning
Can we leverage collectively from those features to improve
performance? Accuracy and diversity in individual classi-
fiers were found to be necessary and sufficient conditions for
high-performing ensemble of classifiers (Dietterich 2000).
Furthermore, it was shown that ensemble learning does not
follow Occam’s razor principle stating that increased com-
plexity decreases generalization accuracy (Ho 1998). En-
semble learning varies the type of learner or the type of input
(e.g., the set of instances or features) to achieve diversity.
For example, bagging (Breiman 1996) varies the set of in-



Global Features Pauses Bursts Revisits Genres
#sessions FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR

User 1 98 50±1.07 35±0.0 50±0.78 30±0.0 52±1.40 37±0.0 47±0.00 32±0.00 50±1.88 28±0.0
User 2 72 52±1.63 43±0.0 51±0.94 52±0.0 50±0.97 48±0.0 48±0.94 59±0.00 48±4.43 34±0.0
User 3 86 55±1.71 33±0.0 52±0.97 37±0.0 52±0.67 41±0.0 54±1.13 50±0.00 62±6.18 22±0.0
User 4 121 56±1.37 37±0.0 51±1.25 42±0.0 51±1.16 37±0.0 50±0.92 56±0.0 49±2.79 1±00
User 5 88 59±1.59 31±0.0 50±0.87 45±0.0 50±0.70 29±0.0 45±0.00 0±0.0 55±2.26 25±0.0
User 6 181 53±1.07 33±0.0 50±0.53 51±0.0 50±0.53 52±0.0 51±0.00 60±0.0 51±0.97 23±0.0
User 7 205 55±0.92 39±0.0 51±0.57 56±0.0 51±0.52 64±0.0 51±0.84 50±0.0 51±0.79 33±0.0
User 8 42 64±2.78 44±0.0 58±1.35 41±0.0 53±1.26 45±0.0 53±1.26 48±0.0 55±3.27 20±0.0
User 9 59 60±1.41 49±0.0 55±0.97 44±0.0 51±1.66 45±0.0 53±2.27 36±0.0 54±2.51 47±0.0
User 10 44 62±2.40 27±0.0 53±2.13 43±0.0 57±0.0 48±0.0 51±1.03 60±0.0 52±3.02 20±0.0
Avg 99 56.5 37.1 52.1 44.1 51.7 44.6 50.3 45.1 52.7 25.5

Table 1: FRR and FAR results (given as percentages) obtained with a one-class SVM classifier for each feature set for each
user. FRR results are averaged over 10 runs.

stances, while the random subspace method varies the set of
features (Ho 1998). We use the random subspace method to
vary the input features of one-class SVMs. Two-fold cross-
validation on the training set evaluates the weight of a classi-
fier used to combine the decisions of the different classifiers
(i.e., self or not self) in a weighted vote. Choosing accurate
classifiers is problematic here since it is easy to overfit in
the one-class classification problem as a classifier choosing
a class (self) at random could achieve perfect accuracy! To
overcome this problem and address the diversity issue, we
select a subset of the classifiers with weighted sampling. We
train a fixed number of classifiers (300) each with a random
subset of features (5) as a pool of classifiers to choose from.
A fixed number of classifiers (107) were then selected from
this pool for our ensemble. These parameters, number of
classifiers, number of features and pool size, were selected
empirically for good performance on User 1 without adjust-
ment for the other users. Future work will select a variable
number of features. Pauses and time-between-revisit distri-
butions were truncated to the first 20 bins to prevent spurious
features due to sparsity in the data. Algorithm 1 describes
our methodology. Table 2 compares the random subspace
method with a mixture of experts ensemble where the deci-
sion of the classifiers trained on the individual feature sets
are combined into a weighted vote using a similar method-
ology.

Mixture of Random
Experts Subspace

FRR FAR FRR FAR
User 1 50±0.66 30±0.0 18±2.20 7±6.70
User 2 56±1.83 48±0.0 33±7.14 7±9.20
User 3 54±2.27 32±0.0 41±4.05 10±8.84
User 4 53±1.87 35±0.0 28±3.56 5±5.64
User 5 49±1.35 16±0.0 22±3.26 19±8.84
User 6 50±1.18 43±0.0 35±4.28 11±8.13
User 7 53±0.53 50±0.0 32±4.11 26±10.47
User 8 55±0.84 37±0.0 44±8.99 13±11.27
User 9 50±1.08 39±0.0 27±6.11 15±10.05

User 10 55±2.37 37±0.0 32±6.61 15±7.68
Avg 52.5 36.7 31.2 12.8

Table 2: FRR and FAR results obtained by ensemble
methods of one-class SVM classifiers with weighted vote
scheme.

Algorithm 1 Random subspace ensemble learning training
methodology where instances are the training instances, P
is the pool size, cl the classifier algorithm, f the number of
features, and n the ensemble size (n ≤ P ).
BUILDCLASSIFIER(instances, cl, P, f, n)

features← instances.features
FOR i = 0 to P

FOREACH feature in features
feature.weight← random

END
fsubset← weight_sampling (features, f)
// Transform instances
fInsts← filter (instances, fsubset)
// Two-fold cross-validation
eval← cross-validate(cl,2,fInsts)
model← train-classifier (cl,fInsts)
model.weight← eval
model[i]← model

END
models← weight_sampling (model, n)

RETURN models
END

The random subspace method further increases the bias of
the classifiers by restricting the amount of features which in
turn reduces overfitting, a major source of classification er-
rors. There is a clear linear relationship between FRR results
and the ensemble size (i.e., the number of selected learners
from the pool) (Fig. 8). FAR results depend both on the
ensemble size and the pool size (Fig. 9). There is a signifi-
cant performance difference (p < 0.05) between FAR results
from our random subspace ensemble learning method and
from the mixture of experts method except for User 8 which
recorded the least number of sessions. There is a signifi-
cant difference in FRR results between the two methods for
half the users, which suggests that some adjustments in the
parameters for specific users might be required.

5 Conclusion
Authentication is important in scaling up the attribution of
Web behavior to large number of users. Our experiments
have shown that although the individual features of Web
browsing behavior are not individually or collectively strong
enough to authenticate and distinguish users, our random



Figure 8: Sensitivity between FRR results and ensemble size
with pool size of 300 and 5 features for User 1

Figure 9: Sensitivity between FAR results, ensemble size
and pool size in random subspace ensemble with 5 features
for User 1

subspace method for ensemble learning can dramatically im-
prove those results. Future work will include additional fea-
tures as well as the exploration of additional one-class learn-
ers. Other research issues include extending our methodol-
ogy to group profiles.
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